
Approximate High Performance Computing : A Fast and

Energy Efficient Computing Paradigm in the Post-Moore Era

Harshitha Menon, James Diffenderfer, Giorgis Georgakoudis, Ignacio Laguna,
Daniel Osei-Kuffuor, Konstantinos Parasyris, Jackson Vanover

As we reach the limits of Moore’s law, which states that the number of transistors per square inch
will double every 18 months, and the end of Dennard scaling, where power use is proportional to
area, new approaches are needed to shape the future of computer architecture and software systems.
One promising approach is approximate computing, where the computation accuracy is traded for
better performance and energy efficiency. The concept of approximate computing is based on the
idea that many applications can tolerate some degree of error in their output results. This allows the
system to use less computational resources and consume less energy, thereby improving performance
and reducing power consumption.

Approximate computing techniques have mostly been applied in non-High Performance Comput-
ing (HPC) domains, such as image processing, machine learning, and visualization. These workloads
are often designed for human eyes, which can tolerate some error without significantly affecting the
accuracy of the output. However, the impact of even small errors in scientific computing applica-
tions can lead to unstable algorithms and incorrect results. Scientific computing often requires high
levels of accuracy and stability, making it much more challenging to apply approximate computing
techniques in this domain.

Despite these challenges, the concept of trading accuracy for performance is not new and has
been applied in the field of HPC for some time. Some of these techniques include spatial and
temporal discretization schemes, approximate numerical algorithms, and mixed-precision computing.
Approximate Computing has been used in HPC to serve two main purposes. Firstly, they are utilized
to reduce computational complexity. For instance, polynomial approximations of functional forms, as
described in Trefethen and Bau (1997), are commonly used. Secondly, these strategies help to make
better use of computing resources. For example, iterative refinement on NVIDIA Tensor Cores, as
detailed in Haidar et al. (2020), is frequently employed. In all of these strategies, the primary goal is
to maintain the accuracy of the desired quantity of interest while improving performance. However,
they require expert knowledge about the application as well as the nuances of the techniques to
give performance gains while not affecting the accuracy. As a result, the impact of approximate
computing in scientific computing has been limited, and more research is needed to find ways to
apply these techniques effectively in this field.

For approximate computing to gain widespread acceptance in HPC, three main considerations
must be taken into account: accuracy, efficiency, and ease of use. Approximate computing techniques
must be able to produce results that are within a defined error threshold, while also maintaining
the stability and correctness of the algorithms used. This necessitates a deep understanding of the
approximate techniques and applications involved, as well as meticulous design and evaluation of
the approximate computing methods. Ensuring efficiency is also critical. Approximate computing
techniques must be able to deliver performance gains that are significant enough to make them
worthwhile. This requires careful design and optimization of the approximate computing techniques
as well as support at different levels of the software stack to ensure that they are able to deliver
the performance benefits promised. Finally, ease of use is essential for the wider adoption of ap-
proximate computing. The techniques must be easy for developers and users to understand and
use effectively. This includes having tools and frameworks that make it easy to apply approximate
computing techniques in HPC.

This article highlights some of our recent works to address these challenges and list open challenges

1



in approximation.

Approximate Computing techniques

There are various strategies for approximation, including hardware and software techniques. Hardware-
based techniques include approximate floating-point multipliers Froehlich et al. (2018); Rehman et al.
(2016), heterogeneous architectures with neural-network-based approximate accelerators Grigorian
et al. (2015), and dropping a fraction of load requests that miss the cache Yazdanbakhsh et al.
(2016). Some proposals have been made for hardware support for approximate computing, such as
ISA extensions providing support for approximate arithmetic Esmaeilzadeh et al. (2012).

Various software techniques have also been proposed to reduce computational complexity and
computing only when necessary. For instance, loop perforation Mittal (2016) skips specific iterations
of a loop in a computational kernel in order to reduce the cost, while function memoization Michie
(1968) stores computed entries of computationally expensive kernels in a look-up table. Among
the different approximate computing methods, mixed-precision has recently gained popularity. It
involves using multiple levels of precision for floating-point data and arithmetic operations to balance
accuracy and performance, and has been shown to significantly enhance the performance of scientific
applications in recent studies Kotipalli et al. (2019); Menon et al. (2018); Laguna et al. (2019). As
HPC systems become more heterogeneous, mixed precision is expected to become more widespread
in scientific applications.

In our recent work, we formalized a general framework for designing error-bounded approximate
computing kernels and applied this framework to the dot product kernel to design qdot Diffenderfer
et al. (2022). We theoretically proved and empirically demonstrated that qdot bounds the relative
error introduced by the approximation. Our experiments on the Conjugate Gradient (CG) and power
method algorithms demonstrate that high levels of approximation can be introduced into these
algorithms without degrading their performance. Furthermore, the formalized general framework
could be used to design other error-bounded approximate computing strategies for kernels other
than the dot product.

There is a definite need to have a benchmark suite to evaluate different approximate computing
methods catering to HPC. Our HPC-MixPBench benchmark suite Parasyris et al. (2020), that repre-
sent common HPC applications, can be used for evaluating different approximate computing analysis.
Our set of benchmarks is composed of ten kernel codes and seven application codes that represent
common HPC workloads. To demonstrate the capability of the benchmark suite, we evaluated them
using mixed-precision, one of the most popular approximate computing techniques, and reported
several insights. Figure 1 gives a high-level overview of the HPC-MixPBench framework consisting
of a runtime library for profiling, a harness to execute the benchmarks, and a verification library
t evaluate the specified quality metric. The findings we report in the paper can help programmers
choose the appropriate mixed-precision method for their application or workload.

Methods to assist in the design of AC applications

Developers wishing to optimize program performance via the use of Approximate Computing tech-
niques must take care that the error induced by such approximations do not deteriorate the output
quality beyond some prescribed threshold. Despite the success of Approximate Computing in sev-
eral domains, there is a significant challenge to be addressed to adopt AC techniques in scientific
computing applications: the lack of methods to identify error resilient code regions. Developers
of error-sensitive high-performance computing (HPC) applications must allocate significant effort
toward the identification of approximable kernels within the program.

Several methods have been proposed to help guide the process of applying approximations in
code. Roy et al. Roy et al. (2014) presents ASAC, a software framework, to automatically discover
approximable data in a program. Their technique first collects information regarding range of a
variable and then perturbs the value of the variable and the output is measured. This is then used to
calculate the sensitivity. They compared their automatic method of identifying approximable data
with hand annotated versions from Sampson et al. (2011) and showed that their statistical method
is able to identify approximable data structures quite accurately. Chippa et al. Chippa et al. (2013)

2



Compile and create 
directories

Analyze source 
code

Evaluate and 
report speed 

up and quality 
loss

YAML 
configuration file

• Application
• Executable
• Analysis Tool
• Quality

Analysis tool (e.g
floatsmith ) Results file

• Execution time
• Accuracy loss
• …Interface

HPC-MixPBench
Applications Runtime libraries Quality metrics

Ha
rn
es
s

Figure 1: High level overview of the HPC-MixPBench framework. HPC-MixPBench includes
a set of benchmark applications, a runtime library for profiling, and a verification library to evaluate
the specified quality metric. HPC-MixPBench has a harness to execute the benchmarks based on
the information provided in the YAML configuration file.

used resiliency characterization for an application to aid in approximation. They injected random
errors into the output of the kernel to study the resiliency.

We list several tools that we developed to analyze the impact of using approximations on the
output of an application. We developed a tool called ADAPT, which used Automatic Differentiation,
to identify regions of the code that are amenable to approximations Menon et al. (2018); Lam et al.
(2019).

There is a need for analysis tools that provide mechanisms to express arbitrary approximations
and analyze the response of the application to these approximations. We proposed Puppeteer Diff-
enderfer* et al. (2022), a novel method to rank code regions based on amenability to approximation.
Puppeteer uses uncertainty quantification methods to measure the sensitivity of application outputs
to approximation errors. A developer annotates possible application code regions and Puppeteer esti-
mates the sensitivity of each region. One can then utilize AC techniques on these regions. Puppeteer
successfully identifies insensitive regions on different benchmarks. For example, we obtain speedups
of 1.18×, 1.8×, and 1.3× for HPCCG, DCT, and BlackScholes, respectively. Figure 2 shows the
operation of Puppeteer.

1. Annotate, compile and execute
2. Define factor spaceTrace Phase

#pragma approx
\ perturbate
…

#pragma approx
\ perturbate
…

		𝑹𝟏

		𝑹𝟐

Static Code Regions

		𝑋!,# ∈ [𝑙!,# , 𝑢!,#]	𝒌𝟏,𝒊

Dynamic Kernels

		𝑋!,$ ∈ [𝑙!,$ , 𝑢!,$]

		𝑋%,# ∈ [𝑙%,# , 𝑢%,#]

	𝒌𝟏,𝒋

	𝒌𝟐,𝒊

1. UQO communicates samples from UQ Library to Puppeteer 
2. Workers compute 𝑓 on sample points and UQO returns for analysisDeploy Phase

1. Send factor space 
domain to the UQ Library

Puppeteer

2. Generate all factor 
space samples {𝑿#} and 

send to Puppeteer

UQ Library

4. Receive {𝑓(𝑿#)} values 
to compute sensitivity 

values 

UQ-Orchestrator

	𝑓(𝑿!) 	𝑓(𝑿#) 	𝑓(𝑿&)

Se
ns
iti
vi
ty

	𝒌𝟏,𝒊 	𝒌𝟏,𝒋 	𝒌𝟐,𝒊

Output Sensitivity

3. Distribute evaluation of 
𝑓 to parallel workers

Figure 2: Puppeteer operates in two phases. During the trace phase, Puppeteer executes the an-
notated application and generates the description of the error domain. In the deployment phase,
the UQ-Orchestrator uses external UQ libraries to sample the error domain, perform distributed
evaluation on the samples, and compute the sensitivity values of the kernels.

Programming Language Support for Approximate HPC

We designed and developed new programming framework to support the use of Approximate Com-
puting techniques in HPC applications.

HPAC is a new, pragma-based approximate computing framework that includes state-of-the-art

3



approximate computing techniques (loop perforation, input/output memoization) and is composable
with OpenMP. HPAC extends Clang/LLVM compiler and OpenMP runtime system to enable easy
integration with existing OpenMP codes to identify approximation opportunities. It is also exten-
sible to support new approximation techniques, providing a convenient and versatile framework to
explore various approximation strategies. Figure 3 shows the overall design of HPAC. HPAC enabled
us to understand how approximation composes with OpenMP-level parallelism. We presented an ex-
haustive evaluation, studying the effectiveness of approximate algorithms on eight different OpenMP
HPC benchmarks and characterized their effect on the application accuracy and performance. Also,
it is extensible by design and allows for seamless integration of new approximation techniques. With
the support of HPAC, developers can effortlessly evaluate several approximate computing methods
for different regions of code and select the approximation technique that meets their performance
and accuracy criteria Parasyris et al. (2021)).

HPAC extended 
Clang

HPAC approximate 
Runtime system

HPAC core components.

A
pp

lic
at

io
n 

co
de

 a
nn

ot
at

ed
 

w
ith

 H
PA

C
 p

ra
gm

a’
s

HPAC Preprocessor
script

Multiple 
application 

versions

HPAC - Driver 
Script

1

2 3

HPAC Harness

5

4

Figure 3: HPAC is comprised of two builing blocks, the core, and the harness. The core implements
the approximate programming model. It extends the Clang/LLVM compiler and provides runtime
support. The harness facilitates easy exploration of the approximate design space.

Conclusion

With the ever-increasing demand for higher computational power, approximate computing provides a
practical way to meet these needs while also reducing energy consumption and cost. A key challenges
in approximate computing is the analysis and handling of errors that are introduced by approximate
techniques. The risk that the errors introduced may accumulate and result in incorrect results is
considerable for scientific applications. Therefore, effective and scalable error analysis and mitigation
strategies are necessary to ensure the use of these techniques in scientific codes. In order to fully
realize the potential of approximate computing, it is essential to adopt a co-design strategy that
combines both hardware and software techniques.. Despite these challenges, the future of approxi-
mate computing is bright, and it is expected that it will continue to gain momentum in the coming
years. As more applications realize the potential of approximate techniques and more research is
conducted, we can expect to see increase in use of approximate computing systems that provide more
efficient and reliable computing solutions.

References

Chippa, V. K., S. T. Chakradhar, K. Roy, and A. Raghunathan (2013). Analysis and characterization
of inherent application resilience for approximate computing. In Proceedings of the 50th Annual
Design Automation Conference, pp. 1–9.

4



Diffenderfer, J., D. Osei-Kuffuor, and H. Menon (2022). A framework for error-bounded approximate
computing, with an application to dot products. SIAM Journal on Scientific Computing 44 (3),
A1290–A1314. LLNL-JRNL-820357.

Diffenderfer*, J., K. Parasyris*, H. Menon, I. Laguna, J. Vanover, R. Vogt, and D. Osei-Kuffuor
(2022). Approximate computing through the lens of uncertainty quantification. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’22, New York, NY, USA. Association for Computing Machinery. LLNL-CONF-829328.

Esmaeilzadeh, H., A. Sampson, L. Ceze, and D. Burger (2012, March). Architecture support for
disciplined approximate programming. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII,
London, England, UK, pp. 301–312. Association for Computing Machinery.

Froehlich, S., D. Große, and R. Drechsler (2018, August). Towards Reversed Approximate Hardware
Design. In 2018 21st Euromicro Conference on Digital System Design (DSD), pp. 665–671.

Grigorian, B., N. Farahpour, and G. Reinman (2015, February). BRAINIAC: Bringing reliable
accuracy into neurally-implemented approximate computing. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), pp. 615–626.

Haidar, A., H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham (2020). Mixed-precision iterative
refinement using tensor cores on GPUs to accelerate solution of linear systems. Proc. Roy. Soc.
London A 476 (2243), 20200110.

Kotipalli, P. V., R. Singh, P. Wood, I. Laguna, and S. Bagchi (2019). Ampt-ga: automatic mixed
precision floating point tuning for gpu applications. In Proceedings of the ACM International
Conference on Supercomputing, pp. 160–170.

Laguna, I., P. C. Wood, R. Singh, and S. Bagchi (2019). GPUMixer: Performance-Driven Floating-
Point Tuning for GPU Scientific Applications. In M. Weiland, G. Juckeland, C. Trinitis, and
P. Sadayappan (Eds.), High Performance Computing, Cham, pp. 227–246. Springer International
Publishing.

Lam, M. O., T. Vanderbruggen, H. Menon, and M. Schordan (2019). Tool Integration for Source-
Level Mixed Precision. In Proceedings of the Third International Workshop on Software Correct-
ness for HPC Applications Held in Conjunction with SC19: The International Conference for High
Performance Computing, Networking, Storage and Analysis, Denver, CO.

Menon, H., M. O. Lam, D. Osei-kuffuor, M. Schordan, S. Lloyd, K. Mohror, and J. Hittinger (2018).
ADAPT : Algorithmic Differentiation Applied to Floating-Point Precision Tuning. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage, and
Analysis (SC’18), Dallas, Texas, pp. 48:1–48:13. IEEE Press.

Menon, H., M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd, K. Mohror, and J. Hittinger
(2018). ADAPT: Algorithmic differentiation applied to floating-point precision tuning. In SC18:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 614–626.

Michie, D. (1968). “memo” functions and machine learning. Nature 218, 19–22.

Mittal, S. (2016). A survey of techniques for approximate computing. ACM Computing Surveys
(CSUR) 48 (4), 1–33.

Parasyris, K., G. Georgakoudis, H. Menon, J. Diffenderfer, I. Laguna, D. Osei-Kuffuor, and M. Schor-
dan (2021). Hpac: Evaluating approximate computing techniques on hpc openmp applications. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’21, New York, NY, USA. Association for Computing Machinery. LLNL-CONF-
821216. Deputy Director for Science and Technology Excellence in Publication Award
and SC Best Reproducibility Advancement Award.

5



Parasyris, K., I. Laguna, H. Menon, M. Schordan, D. Osei-Kuffuor, G. Georgakoudis, M. O. Lam,
and T. Vanderbruggen (2020). Hpc-mixpbench: An hpc benchmark suite for mixed-precision
analysis. In 2020 IEEE International Symposium on Workload Characterization (IISWC), pp.
25–36. LLNL-CONF-809027.

Rehman, S., W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, and J. Henkel (2016, November).
Architectural-space exploration of approximate multipliers. In 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8.

Roy, P., R. Ray, C. Wang, and W. F. Wong (2014). Asac: Automatic sensitivity analysis for
approximate computing. In Proceedings of the 2014 SIGPLAN/SIGBED conference on Languages,
compilers and tools for embedded systems, pp. 95–104.

Sampson, A., W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman (2011). En-
erj: Approximate data types for safe and general low-power computation. ACM SIGPLAN No-
tices 46 (6), 164–174.

Trefethen, L. N. and D. Bau (1997). Numerical Linear Algebra. SIAM.

Yazdanbakhsh, A., G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and T. C. Mowry
(2016). Rfvp: Rollback-free value prediction with safe-to-approximate loads. ACM Transactions
on Architecture and Code Optimization (TACO) 12 (4), 1–26.

6


