
Ellora: Productive AI-Assisted
HPC Software Ecosystem

Lawrence Livermore National Laboratory (LLNL), PI: Harshitha Menon (POC)
Oak Ridge National Laboratory (ORNL), Co-PI: William Godoy
University of Maryland (UMD), Co-PIs: Abhinav Bhatele and Tom Goldstein
Northeastern University (NU), Co-PIs: Arjun Guha and David Bau

Large have impressive performance on Code Generation

• Use Cases of LLMs in Code Generation
• Code Completion

• Refactoring

• Document Generation

• Benefits of LLMs in Code Generation
• Faster Development

• Error Detection

• Language Support
PolyCoder

Codex

Can Large Language Models Write Parallel
Code?

• Parallel programs are more complicated

• HPC codes are poorly represented in LLMs’ training corpora, resulting in incorrect responses

• LLMs process source code primarily as text and lack knowledge about parallel programming model

• LLMs are not explicitly trained for code performance

Co-PI Bhatele’s work — Nichols et al. 2024

Pa
ss

 R
at

e

Ef
fic

ie
nc

y
LLMs struggle to generate correct and performant HPC code.

Ellora aims to revolutionize HPC software development

Improve LLMs’ Effectiveness
in HPC Domain
Enhance state-of-the-art LLMs
to support large and relevant
context and use data from
multiple modalities for
improved performance in
parallel code generation.

Enhance Productivity and
Software Sustainability
Boost developer productivity
through specialized AI-driven
tools and frameworks for HPC,
which will support DOE’s
extensive investments in ECP
software ecosystem.

Trustworthy and Verifiable
LLM
Develop techniques to predict
and explain model errors.
Design models and techniques
that enable explainability.

Advance contextual capabilities of LLMs to improve LLMs’
effectiveness and reduce hallucinations

Large Context Inference: Develop novel, efficient techniques to
expand LLMs' context window size to provide access to more
contextual information.

Enhanced
Contextual

Abilities

Knowledge Graph for Contextual Information: Build a knowledge
graph capturing associations among code entities to provide
relevant context.

Domain-Specific Retrieval Models: Implement self-supervised training for
customizable retrieval models to improve the accuracy and relevance of the
retrieved content.

Thrust 1

Multi-Modal LLMs for enhanced code understanding and
performance

Expand Code Representations Beyond Text: Curate a multi-
modal code dataset incorporating Code, LLVM IR, and
performance characteristics.

Learn from Disjoint Data Across Code Modalities: Learn unified
representations of many modalities using contrastive learning.

Overcome Dataset Size Challenges: Generate additional semi-
synthetic data to address low-data nature of HPC domains.

Thrust 2

Develop Multi-Modal Code LLMs: Design LLMs that learn across
code modalities.

Trustworthiness and verifiability for reliable and
transparent models

Attribution Methods:
Identify tasks performed
by LLMs and linking model
predictions to training data
for improved transparency.

Unlearning Techniques:
Apply unlearning methods
to edit LLMs to remove
erroneous behavior.

Model Error Prediction:
Develop techniques to
predict and explain errors
by analyzing LLMs to detect
mispredictions.

Thrust 3

AI-Assisted software development via HPC-LLM-Agents

Generalize LLM agents to
use HPC tools: Develop
modular approach to parallel
code generation and design
agents capable of using HPC
tools.

Enable reliable
human-agent
collaboration: Create
agents that allow for
user input and
guidance for better
outcome.

Train agents on tool-use
sequence: Enable LLM
agents to use multiple tools
in sequence, reducing
backtracking and optimizing
task completion.

Thrust 4

Our goal is to improve LLMs’ effectiveness and reduce hallucinations by providing relevant context and
enabling large context size

Thrust 1

Large context inference

Code knowledge graph

Develop retrieval modelsEn
h

an
ce

d
 C

o
nt

ex
t

Tasks

• Advance LLMs for efficient
large context inference

• Develop a Code Knowledge
Graph for Contextual Retrieval

• Develop Retrieval Models

• Integrate with HPC-LLM-
Agents

Deliverables

• Open source models
• Instruction dataset for code
• Code knowledge graph of E4S

ecosystem
• Publication on large context

inference
• Publication on using

knowledge graph for context
• Publication on specialized

retrieval models for E4S
codebase

Progress

• Train retrieval models
• Curation of code instruction

dataset
• Parse code repositories and

create code knowledge graph
Planned Publication
• ChatHPC — fine-tune CodeLlama

on a subset of E4S libraries — Q3
FY25

• Retrieval model — Q4 FY25
• Code knowledge graph — Q3

FY25

Deliverable

Our goal is to enable LLMs to use multiple representations of code for enhanced code understanding and
generation

Thrust 2

Tasks

• Create Multi-Modal Source
Code Data

• Learn from Disjoint Data
Across Code Modalities

• Overcome Dataset Size
Challenges

• Develop Multi-Modal Code
LLMs

• Integrate with HPC-LLM-
Agents

Deliverables

• Open source models and
datasets

• Publication on Multi-Modal
Code LLMs with different code
representations

• Publication on low-data
domain

• Publication on LLMs that
support multiple code
representation as well as
performance characteristics

Progress

• Curated dataset of multiple
code representations

Planned Publications
• Multi-Modal Code LLMs — Q2

FY25
• Dataset and model release —

Q2 FY25
• LLMs for Julia — Q4 FY25

Deliverable

Multi-Modal Code Dataset

Learning from Disjoint Data

Overcoming Data Size Challenges

M
ul

ti
-M

o
d

al
 H

P
C

C

o
d

e
 L

LM
s

Multi-Modal Code LLMs

Our goal is to develop techniques for reliable and transparent LLMs

Explain and Predict Errors

Develop Attribution Methods

Edit LLMs to Unlearn ErrorsTr
u

st
w

o
rt

hi
n

es
s

Thrust 3

Deliverable

Tasks

• Develop efficient and accurate
attribution methods

• Explain and predict code LLM
errors

• Edit LLMs to unlearn systematic
errors

Deliverables

• Publication on attribution
techniques

• Publication on unlearning bad
behavior

• Release benchmarks
• Publication on how LLMs reason

about code

Progress

• Work on attribution and reasoning
• Substance Beats Style: Why

Beginning Students Fail to Code
with LLMs — Submitted

Planned Publication:
• Understanding How CodeLLMs

(Mis)Predict Types with Activation
Steering — Q1 FY25

• How LLMs Reason about Pointers
and Aliasing — Q3 FY25

• Attribution in Code LLMs — Q3
FY25

Our final thrusts enables LLMs to use HPC tools to assist in HPC software development

Thrust 4

Applications

• Develop Specialized HPC-LLM-
Agents

• Effectively Invoke Multiple
Tools and Multiple Agents

• Allow Users to Collaborate with
LLM Agents

Deliverables

• Publication on modular
approach for HPC tasks

• Open-source specialized LLM
Agents

• Publication on integration of
HPC tools with LLM Agents

Progress

Deliverable

HPC-LLM-Agents

Multiple Tools and Agents

Users Interface and CollaborationEn
h

an
ce

d
 C

o
nt

ex
t

• Designing HPC-LLM-Agents that
can generate correct and
performant parallel code

Planned Publication:
• Modular approach for parallel

code generation — Q3 FY25
• Integration of an E4S tool with LLM

Agents — Q4 FY25

Team and Budget

William Godoy
(0.35)

Pedro Valero-Lara
(0.35)

M.A.H Monil
(0.35)

Aaron Young
(0.20)

Steven Hahn
(0.20)

Terry Jones
(0.20)

Jeff Vetter
(0.1)

Harshitha Menon
(0.35)

Giorgis
Georgakoudis
(0.20)

Konstantinos Parasyris
(0.10)

Kshitij Bharadwaj
(0.20)

Siu Wun Cheung
(0.20)

Gautam Singh
(New Postdoc)

Todd Gamblin
(advisor)

Tal Ben-Nun
(advisor)

Abhinav Bhatele

Tom Goldstein

Daniel Nichols
(PhD student)

Postdoc (TBD)

Francesca Lucchetti
(PhD student)

David Bau

Arjun Guha

$950K $750K $350K $300K

Alex Loftus
(PhD student)

PhD student

Project Challenges and Mitigation Strategies

Increasing context window size may cause memory related scaling issues:
We plan to leverage Co-PI Bhatele’s work on AxonNN for extreme-scale deep
learning with memory optimizations.
Insufficient data for training and fine-tuning: We will generate generate
synthetic data.
Reliance of HPC-LLM-Agent on various agents: We will adopt a modular
approach to build Agents independently and enable individual Agents to be
used.

	Slide 1: Ellora: Productive AI-Assisted HPC Software Ecosystem
	Slide 3: Large have impressive performance on Code Generation
	Slide 4: Can Large Language Models Write Parallel Code?
	Slide 5: Ellora aims to revolutionize HPC software development
	Slide 7: Advance contextual capabilities of LLMs to improve LLMs’ effectiveness and reduce hallucinations
	Slide 8: Multi-Modal LLMs for enhanced code understanding and performance
	Slide 9: Trustworthiness and verifiability for reliable and transparent models
	Slide 10: AI-Assisted software development via HPC-LLM-Agents
	Slide 11: Our goal is to improve LLMs’ effectiveness and reduce hallucinations by providing relevant context and enabling large context size
	Slide 13: Our goal is to enable LLMs to use multiple representations of code for enhanced code understanding and generation
	Slide 14: Our goal is to develop techniques for reliable and transparent LLMs
	Slide 15: Our final thrusts enables LLMs to use HPC tools to assist in HPC software development
	Slide 16: Team and Budget
	Slide 17: Project Challenges and Mitigation Strategies

