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Large  have impressive performance on Code Generation

• Use Cases of LLMs in Code Generation
• Code Completion

• Refactoring

• Document Generation

• Benefits of LLMs in Code Generation
• Faster Development

• Error Detection

• Language Support
PolyCoder

Codex



Can Large Language Models Write Parallel 
Code?

• Parallel programs are more complicated

• HPC codes are poorly represented in LLMs’ training corpora, resulting in incorrect responses

• LLMs process source code primarily as text and lack knowledge about parallel programming model  

• LLMs are not explicitly trained for code performance

Co-PI Bhatele’s work — Nichols et al. 2024
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LLMs struggle to generate correct and performant HPC code. 



Ellora aims to revolutionize HPC software development

Improve LLMs’ Effectiveness 
in HPC Domain
Enhance state-of-the-art LLMs 
to support large and relevant 
context and use data from 
multiple modalities for 
improved performance in 
parallel code generation.

Enhance Productivity and 
Software Sustainability
Boost developer productivity 
through specialized AI-driven 
tools and frameworks for HPC, 
which will support DOE’s 
extensive investments in ECP 
software ecosystem.

Trustworthy and Verifiable 
LLM 
Develop techniques to predict 
and explain model errors. 
Design models and techniques 
that enable explainability.



Advance contextual capabilities of LLMs to improve LLMs’ 
effectiveness and reduce hallucinations

Large Context Inference: Develop novel, efficient techniques to 
expand LLMs' context window size to provide access to more 
contextual information.  

Enhanced 
Contextual 

Abilities

Knowledge Graph for Contextual Information: Build a knowledge 
graph capturing associations among code entities to provide 
relevant context.

Domain-Specific Retrieval Models: Implement self-supervised training for 
customizable retrieval models to improve the accuracy and relevance of the 
retrieved content.

Thrust 1



Multi-Modal LLMs for enhanced code understanding and 
performance

Expand Code Representations Beyond Text: Curate a multi-
modal code dataset incorporating Code, LLVM IR, and 
performance characteristics. 

Learn from Disjoint Data Across Code Modalities: Learn unified 
representations of many modalities using contrastive learning.

Overcome Dataset Size Challenges: Generate additional semi-
synthetic data to address low-data nature of HPC domains.

Thrust 2

Develop Multi-Modal Code LLMs: Design LLMs that learn across 
code modalities.



Trustworthiness and verifiability for reliable and 
transparent models 

Attribution Methods:
Identify tasks performed 
by LLMs and linking model 
predictions to training data 
for improved transparency.

Unlearning Techniques:
Apply unlearning methods 
to edit LLMs to remove 
erroneous behavior.

Model Error Prediction:
Develop techniques to 
predict and explain errors 
by analyzing LLMs to detect 
mispredictions.

Thrust 3



AI-Assisted software development via HPC-LLM-Agents

Generalize LLM agents to 
use HPC tools: Develop 
modular approach to parallel 
code generation and design 
agents capable of using HPC 
tools.

Enable reliable 
human-agent 
collaboration: Create 
agents that allow for 
user input and 
guidance for better 
outcome.

Train agents on tool-use 
sequence: Enable LLM 
agents to use multiple tools 
in sequence, reducing 
backtracking and optimizing 
task completion.

Thrust 4



Our goal is to improve LLMs’ effectiveness and reduce hallucinations by providing relevant context and 
enabling large context size

Thrust 1

Large context inference

Code knowledge graph

Develop retrieval modelsEn
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Tasks

• Advance LLMs for efficient 
large context inference

• Develop a Code Knowledge 
Graph for Contextual Retrieval

• Develop Retrieval Models

• Integrate with HPC-LLM-
Agents 

Deliverables

• Open source models
• Instruction dataset for code
• Code knowledge graph of E4S 

ecosystem
• Publication on large context 

inference
• Publication on using 

knowledge graph for context
• Publication on specialized 

retrieval models for E4S 
codebase

Progress

• Train retrieval models
• Curation of code instruction 

dataset
• Parse code repositories and 

create code knowledge graph
Planned Publication
• ChatHPC — fine-tune CodeLlama 

on a subset of E4S libraries — Q3 
FY25

• Retrieval model — Q4 FY25
• Code knowledge graph — Q3 

FY25

Deliverable



Our goal is to enable LLMs to use multiple representations of code for enhanced code understanding and 
generation

Thrust 2

Tasks

• Create Multi-Modal Source 
Code Data 

• Learn from Disjoint Data 
Across Code Modalities 

• Overcome Dataset Size 
Challenges 

• Develop Multi-Modal Code 
LLMs

• Integrate with HPC-LLM-
Agents

Deliverables

• Open source models and 
datasets

• Publication on Multi-Modal 
Code LLMs with different code 
representations

• Publication on low-data 
domain

• Publication on LLMs that 
support multiple code 
representation as well as 
performance characteristics

Progress

• Curated dataset of multiple 
code representations

Planned Publications
• Multi-Modal Code LLMs — Q2 

FY25
• Dataset and model release — 

Q2 FY25
• LLMs for Julia — Q4 FY25 

Deliverable

Multi-Modal Code Dataset

Learning from Disjoint Data

Overcoming Data Size Challenges
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Multi-Modal Code LLMs



Our goal is to develop techniques for reliable and transparent LLMs

Explain and Predict Errors  

Develop Attribution Methods

Edit LLMs to Unlearn ErrorsTr
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Thrust 3

Deliverable

Tasks

• Develop efficient and accurate 
attribution methods 

• Explain and predict code LLM 
errors 

• Edit LLMs to unlearn systematic 
errors  

Deliverables

• Publication on attribution 
techniques

• Publication on unlearning bad 
behavior

• Release benchmarks
• Publication on how LLMs reason 

about code

Progress

• Work on attribution and reasoning
• Substance Beats Style: Why 

Beginning Students Fail to Code 
with LLMs — Submitted

Planned Publication:
• Understanding How CodeLLMs 

(Mis)Predict Types with Activation 
Steering — Q1 FY25

• How LLMs Reason about Pointers 
and Aliasing — Q3 FY25

• Attribution in Code LLMs — Q3 
FY25



Our final thrusts enables LLMs to use HPC tools to assist in HPC software development

Thrust 4

Applications

• Develop Specialized HPC-LLM-
Agents

• Effectively Invoke Multiple 
Tools and Multiple Agents 

• Allow Users to Collaborate with 
LLM Agents

Deliverables

• Publication on modular 
approach for HPC tasks

• Open-source specialized LLM 
Agents

• Publication on integration of 
HPC tools with LLM Agents

Progress

Deliverable

HPC-LLM-Agents

Multiple Tools and Agents

Users Interface and CollaborationEn
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• Designing HPC-LLM-Agents that 
can generate correct and 
performant parallel code

Planned Publication:
• Modular approach for parallel 

code generation — Q3 FY25
• Integration of an E4S tool with LLM 

Agents — Q4 FY25



Team and Budget
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Project Challenges and Mitigation Strategies

Increasing context window size may cause memory related scaling issues: 
We plan to leverage Co-PI Bhatele’s work on AxonNN for extreme-scale deep 
learning with memory optimizations. 
Insufficient data for training and fine-tuning: We will generate generate 
synthetic data. 
Reliance of HPC-LLM-Agent on various agents: We will adopt a modular 
approach to build Agents independently and enable individual Agents to be 
used.
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