
Program Synthesis meets Large Language Models — A
portable and performant way to program HPC applications

Principal Investigator: Harshitha Menon; gopalakrishn1
PI Organization: Computation/CASC
Mission Focus/Core Competency: High Performance Computing, Simulation & Data Science

Abstract

As we reach the limits of Moore’s law and the end of Dennard scaling, increased emphasis
is being given to alternative system architectures and computing paradigms to drive future
performance improvements. As specialized and diverse hardware becomes increasingly
available, it is important to ensure that HPC applications can run correctly and efficiently
on them. Given the complexity of scientific codes, manually rewriting them to support
emerging hardware is a challenging task. Large Language Models (LLMs) have shown
great potential in a variety of software related tasks, from code completion to competitive
programming, and can be used to assist in software portability. However, there are chal-
lenges associated with using it in HPC. To this end, we propose to leverage the power of
LLMs to enhance developer productivity and software portability by developing a frame-
work to use LMs fine-tuned for HPC tasks and providing methods to check for correctness.
Our project will allow LLNL scientific applications and portable abstraction libraries like
RAJA to leverage LLMs to assist in code portability for current and emerging hardware.

1 Description

High-performance computing (HPC) is essential for accelerating scientific discoveries as
it enables scientists to perform complex simulations that would otherwise be impossible.
To keep up with the computational demands of modern scientific research, HPC relies
on the latest hardware technologies. With the end of Dennard scaling and the slowdown
of Moore’s Law, we will see more specialized and heterogeneous hardware being used
HPC [1]. With hardware heterogeneity becoming more prevalent in HPC, it has become
important to ensure that scientific software runs correctly and efficiently across a range of
platforms. In the past, HPC applications have had to support new architecture features,
from SIMD vector registers, massively parallel systems, to multi-core architectures. While
these features have provided significant performance benefits, they often required devel-
opers to rewrite their code to utilize the new hardware efficiently. As new architectures
often have different hardware features than its predecessor, rewriting them would require
developers to have a deep understanding of the hardware and how to program it effectively
to achieve the best performance gains. Given that the software complexity of scientific
software and libraries has increased significantly, rewriting them for new architectures is a
challenging task.

To keep up with the architecture advances, simply relying on compiler technologies would
be inadequate. We anticipate that software engineers will have to rely on advanced tech-
niques, such as program synthesis, to port softwares on emerging architectures. Program
synthesis involves automatically generating programs from high-level language specifica-
tion and is expected to reduce software development overhead. The emergence of large lan-
guage models (LLMs) such as GPT-3, OpenAI Codex, and BigCode [2], has enabled gen-

1

Program Synthesis meets LLMs FY24 LDRD ER

eration of code from natural language descriptions of programmer intent, which presents
a new avenue for program synthesis. LLMs have shown incredible potential in a variety
of software-related tasks ranging from competitive programming, code completion, bug
detection, and code optimization, among others. There are early indications that program
synthesis using LLMs is about to bring a fundamental transformation in the way software
will be developed. The U.S. Department of Energy (DOE) recognizes this opportunity, as
evident from various reports such as the DOE’s report on extreme heterogeneity [1] and
the AI for Science report [3], where the need for AI-driven methods to create scientific
software has been identified as one of the primary research directions.

Although the progress in the field of LLMs brings optimism, it is not without challenges.
On the one hand, these models have the potential to boost developer productivity and porta-
bility of code by providing AI-automated solutions. On the other hand, dataset collection,
specification of programmer’s intent and architectural characteristics in the HPC realm
remain open problems. In addition, care should be taken as these models lack an under-
standing of program semantics, which means that there are no guarantees regarding the
correctness of the generated code.

PTLM

FINE-TUNED
MODEL

KNOWLEDGE

FEEDBACK

</code>

CORRECTNESS

</>

~
~
~

code

HW
spec

</>

~
~
~

NVIDIA AMD

</>

~
~
~

code

HW
spec

</>

~
~
~

NVIDIA Cerebras

</>

~
~
~

RAJA
code +

Backend

HW
spec

</>

~
~
~

NVIDIA AMD

HPC DATASET

TEST CASES

…

Figure 1: Overview of our approach

The goal of this proposal is to enable HPC
programmers to leverage the power of LLMs
to enhance developer productivity and software
portability by focusing on developing LLMs
fine-tuned to HPC applications and provid-
ing tools to ensure correctness. Furthermore,
our work can assist in producing backends of
portable abstraction libraries, such as RAJA and
Kokkos, for future architectures. We have iden-
tified three main objectives for this work. The
first is to collect dataset pertaining to HPC; the
second is to develop models fine-tuned on HPC
dataset; and the third is to develop program veri-

fication tools to ensure the correctness of the generated code. Figure 1 illustrates the overall
workflow involving the three goals of this project. Using a disciplined approach to applying
LLMs in scientific applications has the potential to assist in portability of software and im-
prove programmer’s productivity, which translates to monetary savings in the deployment
of new HPC systems.

Thrust 1: Creating HPC code datasets for portability

While large version control repositories, such as GitHub, provide a wealth of data for ma-
chine learning models, HPC codes account for only a small fraction of the dataset. Fur-
thermore, the PTLMs aren’t trained for specific tasks such as porting software efficiently
from one hardware to another. The first thrust will involve collecting datasets for HPC rel-
evant tasks that will be used to fine-tune PTLMs. For code portability, the data collection
process would involve gathering instances of how a code was ported from one architec-
ture to another. We can obtain such datasets from resources like RajaPerf, Codesign proxy
apps that have different implementations for different architectures. We will develop an ar-

2

Program Synthesis meets LLMs FY24 LDRD ER

chitectural model, similar to [4], that will be used for specifying hardware characteristics.
Our portability-oriented dataset will consist of code examples and hardware specifications
showcasing how the code was ported.

Thrust 2: Training LLMs for HPC portability

Similar to how the machine learning community employs fine-tuning and transfer learning
to perform well on tasks unseen, we will use pre-trained language model (PTLM) as the
starting point and retrain it on HPC codes. In our recent work [5], we demonstrated that
PTLMs can be fine-tuned to model HPC and scientific code to outperform general LLMs
in HPC-specific tasks, such as autocomplete HPC functions, add OpenMP pragmas, and
model performance of source code changes. We plan to use a model from the BigCode
project, where Co-I Guha is part of the leadership team. BigCode is training PTLMs on
permissively licensed, open source code on GitHub. Its preliminary 1B parameter models
are SOTA for their size [2]. The objective of this thrust is to train a model, fine-tuned on
data that includes code for both source and target hardware, in addition to their hardware
specifications, to learn a mapping between them.

Thrust 3: Correctness and Verification

Although these LLMs are good, they are not perfect, and at times they may produce code
that looks reasonable but with subtle bugs. In order to build trust in such a system, we need
to build tools to check for correctness. We will verify the results of the model in several
different ways. We will use test cases and generate inputs that can unearth subtle bugs in
code. We will tap into years of research from the Programming Language (PL) community
and work of Co-I Guha to develop formal methods to verify the generated code and create
new test cases. We will identify and characterize the most common bugs that appear in the
generated code and will check for a limited number of issues, such as incorrect branching
and segmentation faults, among others. Finally, we will employ mechanisms to obtain
feedback from users and verification tools and use them for Reinforcement Learning from
Feedback [6] to further improve the model.

2 Expected Outcomes

Expected outcomes of this project are the following: (1) Corpus of HPC code edits and
hardware specifications; (2) A framework to specify hardware features; (3) Model trained
on portability-specific dataset for HPC that learns code mapping for architectures; (4) Ver-
ification tool to check for bugs in the generated code and generate new test cases; (5) New
technique that uses the feedback for reinforcement learning to further improve the model.

Risks and Mitigation. Machine learning models are known to require large amounts of
data and compute resources to learn in order to make accurate predictions. Mitigating this
is one of the main tasks of the project. We will use PTLMs, which have been trained on
vast amounts of publicly available code repositories, and fine-tune it with additional data
specific to the problem domain. This will enable us to train faster while using lesser data.

Relevance to Mission Focus Area and Core Competency. Our project directly supports
one of the LLNL core competencies: high-performance computing. Future deployment of
HPC systems for NNSA stockpile stewardship simulations will benefit from our work.

3

Program Synthesis meets LLMs FY24 LDRD ER

Key Team Members
Team: H. Menon at 40%, G. Georgakoudis at 25%, K. Parasyris at 20%, Postdoc at 75%,
Prof. A. Guha + Ph.D Student (subcontract - Northeastern University)

Advisors: B. Kailkhura at 5%, D. Beckingsale at 5%, I. Laguna at 5%, T. Gamblin.

Estimate of Proposal Budget. FY23: $743K (1.0 FTE, 1 Postdoc, subcontract); FY24:
$798K (1.0 FTE, 1 Postdoc, subcontract); FY25: $833K (1.0 FTE, 1 Postdoc, subcontract).

References

[1] JS Vetter, R Brightwell, M Gokhale, P McCormick, R Ross, J Shalf, K Antypas,
D Donofrio, A Dubey, T Humble, et al. Extreme heterogeneity 2018: Doe ascr
basic research needs workshop on extreme heterogeneity (2018). DOI: https://doi.
org/10.2172/1473756.

[2] The BigCode Team. SantaCoder: Don’t reach for the stars!, 2023. 10.48550/arXiv.
2301.03988.

[3] Rick Stevens, Valerie Taylor, Jeff Nichols, Arthur Barney Maccabe, Katherine Yelick,
and David Brown. Ai for science: Report on the department of energy (doe) town
halls on artificial intelligence (ai) for science. Technical report, Argonne National
Lab.(ANL), Argonne, IL (United States), 2020.

[4] Li-Wen Chang, Izzat El Hajj, Christopher Rodrigues, Juan Gómez-Luna, and Wen-mei
Hwu. Efficient kernel synthesis for performance portable programming. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–13. IEEE, 2016.

[5] Daniel Nichols, Anirudh Marathe, Harshitha Menon, Todd Gamblin, and Abhinav
Bhatele. Modeling parallel programs using large language models. Under Submis-
sion, 2023.

[6] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. Advances in neural
information processing systems, 30, 2017.

4

10.48550/arXiv.2301.03988
10.48550/arXiv.2301.03988

	Description
	Expected Outcomes

