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ABSTRACT
Modern software is incredibly complex. A typical application may

comprise hundreds or thousands of reusable components. Auto-

mated package managers can help to maintain a consistent set of

dependency versions, but ultimately the solvers in these systems

rely on constraints generated by humans. At scale, small errors

add up, and it becomes increasingly difficult to find high-fidelity

configurations. We cannot test all configurations, because the space

is combinatorial, so exhaustive exploration is infeasible.

In this paper, we present Reliabuild, an auto-tuning framework

that efficiently explores the build configuration space and learns

which package versions are likely to result in a successful configu-

ration. We implement two models in Reliabuild to rank the different

configurations and use adaptive sampling to select good configura-

tions with fewer samples.We demonstrate Reliabuild’s effectiveness
by evaluating 31,186 build configurations of 61 packages from the

Extreme-scale Scientific Software Stack (E4S). Reliabuild selects

good configurations efficiently. For example, Reliabuild selects 3×
the number of good configurations in comparison to random sam-

pling for several packages including Abyss, Bolt, libnrm, OpenMPI.

Our framework is also able to select all the high-fidelity builds in

half the number of samples required by random sampling for pack-

ages such as Chai, OpenMPI, py-petsc4py, and slepc. We further

use the model to learn statistics about the compatibility of differ-

ent packages, which will enable package solvers to better select

high-fidelity build configurations automatically.

1 INTRODUCTION
Since at least the 1960’s, developers have striven to make use of

software components [36]. Reusing components saves time and

separates concerns—client code can rely on robust implementa-

tions of common functionality without reimplementing them. How-

ever, with the efficiency of reuse has come an increase in com-

plexity [9, 14, 17, 24, 34]. Package management is a cornerstone of

modern software engineering; millions of components, or packages
are available from public registries and can be included in a project

by simply running a command or modifying a line in a file.

To deal with this complexity, software ecosystems today use

automated package managers (e.g., APT, NPM, Maven, Cargo, and

Spack), which analyze compatibility constraints among packages

and select a consistent set of versions to install. Simply selecting a

compatible version configuration is known to be NP-complete [15,

35], but there may be many valid configurations. Selecting the best
of these requires that we solve an NP-hard constraint problem along
with an NP-hard optimization problem [5, 38, 48].

*
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There are many reasons to choose software versions carefully.

Recent exploits in package ecosystems have highlighted issues

with the strategies employed by most package managers [8] [12].

In particular, many systems will choose the latest possible version,

assuming that it has the latest fixes and security updates. However,

using the latest version can also break package builds. We would

like to be able to balance these concerns, but threading the needle

between the need to track updates and choosing known stable

builds is extremely hard. The alternatives are to use wisdom of
the crowds (choice of the majority) [39] when selecting package

versions or to select the lowest allowed version. However, none of

these prevent or detect conflict defects [6].

In the scientific software and ML ecosystems, the pain of build

errors is particularly acute. Code is written in in compiled languages

such as C, C++, and Fortran, along with interpreted front-ends

in Python and Lua. There are many compilers, package versions,

language versions, and interoperability concerns. Porting to new

systems can lead to a myriad of errors. We would like our packaging

tools to help by visiting the bleeding edge to find bad configurations

before we encounter them. Ideally, we could learn from related

builds and increase the likelihood that a build we have never tried

before will work. We call such builds “high-fidelity builds“.

In this paper, we present an active-learning-based method to

select configurations with high-fidelity, and thus a high likelihood

of building successfully. Our approach uses adaptive sampling, a

technique where samples are collected in an iterative fashion, to

reduce the number of samples used to identify high-fidelity built

configurations. We leverage the inherent relationship between sub-

packages in the form of a dependency graph and use it to design a

surrogate model to predict whether a configurationwill successfully

compile. Our surrogate model is a probabilistic model that gives a

joint distribution over the dependencies to calculate a score that

indicates whether a configuration will build. This provides a set of

promising samples which are used by the adaptive sampling algo-

rithm to evaluate their true objective function by running the build

process. This approach will enable users to select configurations

that are highly likely to build using limited evaluations, reducing

the user effort and resource overhead. Our main contributions are:

• Reliabuild, a novel active-learning-based approach that se-

lects high-fidelity build configurations.

• Two probabilistic surrogate models that assign builds scores

using: 1) wisdom of the crowd, 2) a Bayesian model that

learns from dependencies among the packages.

• Automatically deriving dependency version constraints by

analyzing the relative importance of different packages in

the learned model.
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• A detailed experimental evaluation of our approach over

31,186 builds from the E4S scientific software ecosystem.

In our evaluation, we find that Reliabuild selects high-fidelity

build configurations automatically using far fewer samples than a

randomized selection. The Bayesian as well as the wisdom of the

crowd surrogate models are able to select good build configura-

tions. However, the model based on Bayesian optimization provides

better prediction accuracy. Further, Reliabuild provides several in-

sights that can be used by package managers as well as developers

to determine possible version conflicts as well as understand the

sensitivity of the build outcome to certain packages versions.

2 BACKGROUND
The appeal of component software is clear; dividing software into

logical components enables developers to separate concerns and

reuse software more easily. Experts on one part of a system can

independently develop a component package and expose an in-

terface for other teams to rely on. Teams that rely on an external

dependency can easily upgrade to newer versions with bug fixes

and security updates, provided that the dependency’s interface is

still compatible. Ensuring this compatibility, or at least reliably

predicting it, is the challenge we aim to address in this paper.

2.1 Versioning
Package managers rely on version metadata to determine pack-

age compatibility. Ultimately, this metadata comes from humans

(package developers and maintainers) with some knowledge of the

package and its dependency relationships. Developers can declare

dependencies using a fixed version (e.g. use only version 1.9.2) or a

version range (e.g use a version which is at least as recent as 1.0.2

or below version 1.9.2 or between two 1.8.2 − 1.9.2). While fixed
versions improve build determinism, they limits the flexibility of

a package. Supporting only a specific version can conflict with

the versions required by other dependent packages, and this limits

composability by making it very difficult to integrate packages into

large projects. The problem with flexible version ranges is that

maintainers cannot test all possible configurations. Rather than

exhaustively testing the versions in a range, developers more often

simply assume that compatibility is consistent across all of them.

2.1.1 Balancing versions. Maintainers must strike a delicate bal-

ance. They need to keep their dependency specifications as flexible

as possible to benefit from bug fixes and new features of dependent

packages. However, they must also avoid including incompatible

updates. At the same time, package developers must be careful

not to release new versions with breaking changes. Conventions

such as semantic versioning, or semver [45], can help to identify

new releases that either preserve or break compatibility, but se-

mantic versioning reliees heavily on developers to know the rules

of compatibility and versioning their package releases. Such rules

are complex and typically not fully understood [16] and, although

developers are getting better with them, there is still a lot miss-

ing [13, 17]. Tools that identify incompatible changes through static

analysis are still incomplete [30], and whereas testing [10] provides

some coverage but cannot provide guarantees [27]. Because of this,

trying new dependency can still be a harrowing experience. Even

dyninst@8.1.2 
%gcc@4.7.3

arch=linux-debin-
x86_64

libdwarf@20130719 
%gcc@4.7.3

arch=linux-debin-
x86_64

libelf@0.8.11
%gcc@4.7.3

arch=linux-debin-
x86_64

dyninst

libdwarf

libelf@0.8.11

(a) Abstract Spec: DAG representation of the spec: “dyninst
l̂ibelf@0.8.11” . The spec allows freedom to the Spack con-
cretizer to select any version for dyninst and libdwarf but con-
straints the libelf package to use the fixed version 0.8.11

dyninst@8.1.2 
%gcc@4.7.3

arch=linux-debin-
x86_64

libdwarf@20130719 
%gcc@4.7.3

arch=linux-debin-
x86_64

libelf@0.8.11
%gcc@4.7.3

arch=linux-debin-
x86_64

(b) Spack provides as input to the concretizer the abstract spec
depicted in Figure 1a. The concretizer produces as output a con-
crete spec. Namely, in a concrete spec each node in the dag has
all the information fully defined.

Figure 1: Abstract and concrete spec DAG representations.

minor or patch version changes frequently break builds, and finding

a working configuration can involve manual experimentation.

2.1.2 Version exploits. Version flexibility has been exploited re-

peatedly. Most recently in the NPM ecosystem, a maintainer inten-

tionally sabotaged a popular NPM package by removing it from

NPM and deleting its repositories [12]. After it was reinstated by

the community and NPM, the maintainer uploaded a version with a
higher version number introducing changes designed to break any

software that used the package. Dependent packages immediately

started to fail, resulting in thousands of bug reports. Another exploit

called dependency confusion [8] takes advantage of version priority.

A project with private dependencies meant to be fetched internally

may also rely on a public package repository for open source depen-

dencies. Attackers can add an identically named, higher-versioned

malicious package to an external repository and override the inter-

nal package, allowing them to run code on private systems.

2.2 Spack
In this paper we use the Spack [21] package manager to explore

the combinatorial build space of packages and to understand what

factors contribute to a successful build. We chose Spack for several

reasons. First, because it comes from the world of High Perfor-

mance Computing (HPC), Spack is designed to support building

packages from source. Second, as HPC engineers frequently need to

port packages to new systems, Spack is very flexible about versions,
build parameters, and dependency configurations. It exposes pa-

rameters to users as adjustable knobs and allows a single package

to be built in many different ways. This is ideal for experimen-

tation. Finally, like system-level Linux package managers, Spack

is language-agnostic. Its focus is on HPC, scientific computing,

and machine learning, so C, C++, Fortran, Python, and various

parallel programming models comprise most of the > 6, 000 pack-

ages in its ecosystem. Scientific software is notoriously difficult to

build [18, 21, 28, 33], and our aim is to simplify build configuration.

2.2.1 Package DSL:. Spack packages are written in a domain-

specific langage embedded in Python, as shown in the example
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class Kripke(CMakePackage):
"""Kripke is a 3D Sn deterministic particle transport mini-app."""

homepage = "https://computation.llnl.gov/kripke"
url = "https://computation.llnl.gov/kripke-openmp-1.1.tar.gz"

version('1.2.3', sha256='3f7f2eef0d1ba5825780d626741eb0b3f026...')
version('1.2.2', sha256='eaf9ddf562416974157b34d00c3a1c880fc5...')
version('1.1',   sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5...')

variant('mpi',    default=True, description='Build with MPI.')
variant('openmp', default=True, description='Enable OpenMP.')

depends_on('raja'), when=@1.2:')
depends_on('mpi', when='+mpi')
depends_on('cmake@3.0:', type='build')

def cmake_args(self):
return [

'-DRAJA_PREFIX=%s' % (self.spec['raja'].prefix),
'-DENABLE_OPENMP=%s' % ('+openmp' in self.spec),
'-DENABLE_MPI=%s' % ('+mpi' in self.spec),

]

def install(self, spec, prefix):
# Kripke has no install target; copy it into place
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Figure 2: Example of a parameterized Spack package.

Kripke package in Figure 2. Each package is a class containing

directives at the class-level to constrain the build space and functions
that describe how to build. In the figure, version directives describe
available version tarballs and their checksums, variant directives

expose optional build parameters, and depends_on directives define
dependencies on other packages. Packages may require particular

versions of dependencies, e.g., kripke requires cmake at version

3.0 or higher. Dependencies can also be conditional on versions,

variants, or other properties. Here, kripke only depends on raja
when it is at version 1.2 or higher, and it only depends on mpiwhen
the mpi variant is enabled. The raja, mpi, and cmake packages are

described by separate package templates like this one.

Directives are supplied by package maintainers to define the

combinatorial space of configuration that are possible. Spack selects
a concrete configuration, or spec, from this space and builds it using

the recipe described in the package’s functions. Here, the package

extends a base CMakePackage class that has the bulk of the standard
recipe for handling the CMake build system, and the cmake_args
method tells the package how to translate the spec configuration
to arguments for the cmake command that configures the build.

2.2.2 spec syntax: The spec syntax in Spack allows users to spec-

ify their own constraints on top of those provided by maintainers

in package recipes. For example, often a user may only care to

build a particular package with no additional constraints, or build a

package with a specific compiler. Table 1 presents some examples

of the spack install command, the spec syntax and a description.

The spec syntax is fully recursive, in that any dependency can be

constrained, just as the root node can.

2.2.3 Concretization: The specs in the table are abstract – that

is, they do not specify all aspects of build configuration. Typically,

users care about a very small set of constraints, and rely on Spack

to decide the rest of the build configuration. In Spack, the process of

selecting a consistent build configuration is called concretization. In
other package managers, the analogous process is typically called

dependency resolution. Figure 1a presents an abstract spec DAG

along with its corresponding concrete spec. The concrete graph is

created by combining constraints from packages, command line,

and user preferences and solving for what nodes and configuration

Table 1: Examples of the spack install command using the
spec to constrain the combinatorial build space.

Examples Meaning

spack install kripke
Install kripke but do not constrain the in-

stallation; Spack decides how to build.

spack install kripke
%gcc@8.3.1

Build kripke with gcc 8.3.1

spack install
kripke@1.2.2~mpi
^raja@1.9

Build kripke version 1.2.2 with mpi dis-

abled and with raja version 1.9.

options should be present. Constraints not defined in the abstract

spec represent degrees of freedom.

Spack’s concretizer is a combinatorial logic solver implemented

using Answer Set Programming (ASP) [23] It translates inputs from

i) the package-DSL, ii) the spec-syntax, and iii) configuration file

into a Prolog-like program that finds a dependency graph satisfying

all constraints from the the package DSL and the spec syntax on

the command line. The concretizer eases the task of exploration

because it ensures that only valid configurations are resolved. How-

ever, there can exist multiple configurations which satisfy those

constraints. Typically, users must explore this space manually by

specifying constraints, but our goal in this work is to automatically

find good configurations within the set of valid configurations.

2.3 Vision for the Future
In an ideal software ecosystem the package authors and main-

tainers would be able to define dependencies without any specific

constraints and fully embrace flexible/range versioning schemes.

The package managers of the future should be able to automatically

select compatible configurations that successfully build. Spack pro-

vides rich abstractions to maintainers and users to fully embrace

such a software ecosystem. In essence, Spack separates concerns. It

allows packages to be extremely flexible while also providing syntax

to the user to fix constraints. However, currently this design choice

burdens the user. Since they need to identify configurations that

will build from a potentially sparse space of options. Our approach

tries to bridge this gap.

3 HIGH-FIDELITY BUILD CONFIGURATION
SELECTION

Identifying compatible versions of a package’s dependencies is a

time consuming and error-prone endeavour. Currently, the process

of identifying a package configuration that successfully builds relies

on individuals with in-depth knowledge of various packages and

their interactions with their dependencies. In the absence of such

knowledge users have to resort to exploring the build configuration

space by trying out various combinations of packages and their de-

pendencies. The space formed by all possible options for a package

and dependencies is immense, and as a result an exhaustive search

of that space is impractical. One can resort to random sampling,

but that is still a tedious process, and if system parameters change

it would have to be redone all over again. Moreover, just building

the package itself takes a significant amount of time. Ideally, we
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want an automated process that can select select configurations

that are highly likely to build based on a smaller set of samples.

The trick to learning quickly is to pick samples carefully, and

we develop an active-learning-based approach to identifying high-

fidelity package build configurations using only a limited set of

samples. Active learning algorithms select data from which to learn

in order to achieve a specific objective. This is especially suitable

when the true objective function evaluations are expensive, as is

in the case of building packages. Below, we describe the problem

formally and provide details about the iterative sampling, design of

the model, and describe the selection algorithm in its entirety.

Let the root package we are building require 𝑛 dependencies,

each of which is represented by 𝑋𝑖 , 𝑖 ∈ 1, . . . , 𝑛. A package 𝑋𝑖 can

take on values 𝑥𝑖 ∈ 𝑣𝑖,1, . . . , 𝑣𝑖,𝑚𝑖
. We use 𝒙 ≡ [𝑥1, . . . , 𝑥𝑛] ∈ X to

represent a configuration of the 𝑛 dependent packages as a vector.

Let 𝑓 : X → {0, 1} be a function representing the outcome of

building a configuration. If a configuration 𝒙 builds successfully,

then 𝑓 (𝒙) = 1 and if it fails to build, then 𝑓 (𝒙) = 0. Our goal is

to find some configuration 𝒙∗ ∈ X, from the space of all possible

configurations X, that successfully builds. This can be represented

by the following objective function.

𝒙∗ = argmax

𝒙
𝑓 (𝒙)

Note that, while there may be many configurations that successfully

build, we are interested in finding any one of those.

3.1 Iterative Configuration Selection
Algorithm

We use an iterative process for sampling configurations that are

likely to build. A probabilistic surrogate model is constructed that

predicts the probability that a configuration will successfully com-

pile. A set of highly likely candidates is sampled and built. The

outcome is then used to update the model and the process is re-

peated. Thus, our method follows an adaptive iterative scheme,

where it alternates between updating the model and using it to

make choices about which configurations to investigate next. Our

method is sketched in Algorithm 1.

Algorithm 1 Pseudocode for Adaptive Sampling

1: procedure Sample(𝑓 ,M0,S,𝑇 )
2: H0 ← ∅
3: for 𝑡 = 1 to 𝑇 do
4: 𝒙∗𝑡 ← argmax𝒙M𝑡−1 (𝒙)
5: 𝑦∗𝑡 ← 𝑓 (𝒙∗𝑡 ) ⊲ Expensive process

6: H𝑡 ←H𝑡−1 ∪ {(𝒙∗𝑡 , 𝑦∗𝑡 )}
7: M𝑡 ← FITMODEL(M𝑡−1,H𝑡 )
8: end for
9: returnH𝑇
10: end procedure

In each iteration 𝑡 , a single configuration 𝒙∗𝑡 is selected, from a

list of candidate configurations. As evaluating the true objective

function for all the candidate configurations is expensive, we use

a surrogate modelM𝑡−1 to score the candidates. The surrogate

model is constructed from the observation history, H𝑡−1, and is

cheap to evaluate. The candidate 𝒙∗𝑡 with the maximum score value

is selected at each iteration and is use to evaluate the true objec-

tive function, 𝑦∗𝑡 = 𝑓 (𝒙∗𝑡 ), by running the build process for the

configuration 𝒙∗𝑡 . The result of the evaluation is then added to the

observation historyH𝑡−1 to yield the updated historyH𝑡 . Finally,
H𝑡 is used to update the model, yieldingM𝑡 , and choose the next

configuration 𝒙∗
𝑡+1 at iteration 𝑡 + 1. This process continuous itera-

tively until iteration 𝑡 = 𝑇 . The algorithm starts off with a small set

of 20 initial samples drawn uniformly at random. All of them are

evaluated to obtain initial observation history 𝐻0 and then create

the initial surrogate modelM0. This method is a form of Sequential

Model Based Global-Optimization methods (SMBO), and has been

used for black box optimization of functions that are expensive to

evaluate [29, 31, 50].

3.2 Probabilistic Surrogate Model
A surrogate model is a model that approximates the true objective

function, 𝑦 = 𝑓 (𝒙), and provides a significantly cheaper method

for computing the approximate objective for all samples. Given a

space X of all possible build configurations, our goal is to design

a surrogate model that provides a score indicating whether a con-

figuration 𝒙 ∈ X is likely to build A good surrogate model will

assign a high score to each good configuration. As the surrogate

is significantly cheaper to evaluate than the true objective func-

tion, the iterative sampling algorithm (see section 3.1) can use it

to rank all the configurations and select the most promising con-

figuration whose true objective function can then be evaluated by

running the build process. We describe two surrogate models that

are incorporated in Reliabuild.

3.2.1 Bayesian Model. To construct this model, we use the algo-

rithm used in Bayesian optimization, which has been used for tun-

ing the hyperparameters of deep neural networks [7], where train-

ing is a very expensive process. The surrogate modelM(𝑥) com-

putes Expected Improvement (I) [31] using a probabilistic model

𝑝𝑦 |𝒙 (𝑦 | 𝒙) for some configuration 𝒙 . The Expected Improvement

I (eq. (3)) is the expected margin by which the true objective 𝑓 (𝒙)
will be 1 (successfully builds).

In the Bayesian optimization method, Bayes rule is used to define

𝑝𝑦 |𝒙 (𝑦 | 𝒙) in terms of 𝑝𝒙 |𝑦 (𝒙 | 𝑦), yielding:

𝑝𝑦 |𝒙 (𝑦 | 𝒙) =
𝑝𝒙 |𝑦 (𝒙 | 𝑦)𝑝𝑦 (𝑦)

𝑝𝒙 (𝒙)
(1)

Here, 𝑝𝑦 (𝑦) is the prior distribution for 𝑦 and 𝑝𝒙 (𝒙) =
∫
𝑝𝒙 |𝑦 (𝒙 |

𝑦)𝑝𝑦 (𝑦)𝑑𝑦 is the marginal distribution of 𝒙 .
To model 𝑝𝒙 |𝑦 (𝒙 | 𝑦) we split 𝑦 into two possibilities: 1) success-

fully builds i.e. 𝑦 = 1, and 2) fails to build i.e. 𝑦 = 0. This enables us

to define the probability distribution 𝑝𝒙 |𝑦 (𝒙 | 𝑦) in terms of two

probability density functions; 𝑝𝑔 (𝒙) for good configurations, and

𝑝𝑏 (𝒙) for bad configurations:

𝑝𝒙 |𝑦 (𝒙 | 𝑦) =
{
𝑝𝑔 (𝒙) if 𝑦 = 1

𝑝𝑏 (𝒙) if 𝑦 = 0,
(2)

Finally, the Expected Improvement I(𝒙) can now be written as:

I(𝒙) = 1

𝛼 + 𝑝𝑏 (𝒙)
𝑝𝑔 (𝒙) (1 − 𝛼)

(3)
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We can compute I(𝒙) for each candidate configuration and choose

the one with the highest value as the candidate 𝒙∗𝑡 that is most likely

to build. 𝒙∗𝑡 can then be used for performing the full evaluation

𝑦∗𝑡 = 𝑓 (𝒙∗𝑡 ).
To construct 𝑝𝑔 (𝒙) and 𝑝𝑏 (𝒙), we leverage the underlying de-

pendency structure of the package. We represent a package and its

dependencies using an undirected graph, and consider a joint distri-

bution over the dependencies to calculate the score. Let𝐺 = (𝑋, 𝐸)
denote the undirected graph corresponding to the root package

of interest, where 𝑋 is the set containing the package and the de-

pendencies and 𝐸 is the set of edges as given by the dependency

structure of the package.

Our surrogate model uses a probability density defined over the

prediction values 𝑦 given 𝒙 . Estimating the full joint distribution

over the parameter space is not feasible. However, we can leverage

the inherent relationship between the packages provided by the

package dependency graph to obtain a factorized distribution. This

allows us to represent the joint probability distributions as a product

of factors with smaller number of variables. Let the factors be

{𝐹 𝑗 (𝑉𝑗 )}𝑚 , where 𝑉𝑗 ⊆ {𝑋1, . . . , 𝑋𝑛} is a subset of the variables.

Then we can write the joint distribution 𝑝𝑔 (𝒙) as

𝑝𝑔 (𝒙) =
𝑚∏
𝑗=1

𝐹
(𝑔)
𝑗
(𝑉𝑗 ) (4)

We use the (𝑔) superscript to denote the factors corresponding to

distribution for the good configurations 𝑝𝑔 . We consider factors

of at most size two, that are defined for every node and edge of

the dependency graph. For example, a factor 𝐹 (𝑔) ({𝑋 𝑗 , 𝑋𝑘 }) corre-
sponding to an edge between the node 𝑗 and the node 𝑘 captures

the likelihood of that pair compiling.

The underlying assumption behind this factorization is that the

probability of a package building will depend on whether that pack-

age and its dependencies can be built successfully. In the event

where a package and its immediate dependency fails to build, the

package fails to build because its requirements cannot be satis-

fied. Hence, instead of estimating the full joint distribution, we

can reasonably approximate the probability of a package building

as a factorization over the probability distribution of the pairwise

distributions between each parent and child (given by the depen-

dency graph). 𝑝𝑏 (𝒙) is constructed similarly to Eq 4 using the same

factorization {𝑉𝑗 }𝑚 but a different set of factor functions 𝐹
(𝑏)
𝑗

.

3.2.2 Wisdom of the Crowd. This approach uses the majority opin-

ion to select versions for packages [39]. The probability of selecting

a version for a package is directly proportional to the number of

times it occurred in successfully built configurations in the observed

data. This can be represented as a probability distribution as shown

below.

𝑝 (𝒙) =
𝑛∏
𝑖=1

𝑝𝑔 (𝑣𝑖 ) (5)

where 𝑝𝑔 (𝑣𝑖 ) is the probability of finding package 𝑣𝑖 of 𝑋𝑖 in the

observed set of good configurations.

3.3 Pairwise Importance Analysis
A particular choice of version for a package or it’s dependencies can

have a significant impact on whether that package builds. However,

not all parent and child pairs in the package dependency tree will

have similar influence on the final outcome. Some package pairs

might be compatible across all possible versions and some might

have very strict compatibility rules. Identifying the pairs that are

crucial for the success or the failure of the build process enables

users to better understand the most likely sources of failure. We

use the two probability densities from the surrogate model to de-

rive a metric that tells us the relative significance of each package

in build outcomes. Recall that the surrogate model maintains two

distributions: a distribution of package versions based on high-

fidelity configurations 𝑝𝑔 , and a distribution of package versions

based on bad configurations 𝑝𝑏 . The degree to which these distri-

butions differ from one another is an indication of how sensitive

the build outcome is to the version of this package. We use Jensen-

Shannon (JS) divergence to compute the difference between the

two distributions.

For two probability distributions 𝑃 and 𝑄 defined in the same

probability space 𝑋 , the JS divergence is defined using 𝑀 = (𝑃 +
𝑄)/2 as

𝐷 𝐽 𝑆 (𝑃,𝑄) =
1

2

𝐷𝐾𝐿 (𝑃,𝑀) +
1

2

𝐷𝐾𝐿 (𝑄,𝑀) (6)

𝐷𝐾𝐿 (𝑃,𝑀) =
∑
𝑥 ∈𝑋

𝑃 (𝑥) log 𝑃 (𝑥)
𝑀 (𝑥) (7)

Here 𝐷𝐾𝐿 (𝑃,𝑀) is the Kullback–Leibler (KL) divergence from𝑀 to

𝑃 . 𝐷𝐾𝐿 (𝑄,𝑀) is defined similarly. Note that 𝐷 𝐽 𝑆 (𝑃,𝑄) ≥ 0, with

equality for identical distributions.

4 EXPERIMENTAL SETUP
In this section we provide details about the dataset used, data col-

lection mechanism, and the metrics used for our evaluation.

4.1 Evaluation Dataset
We evaluated our model on several packages from the Extreme-

scale Scientific Software Stack (E4S). E4S provides open source

software packages for developing, deploying and running scien-

tific applications on high-performance computing (HPC) platforms.

These software packages are implemented in different program-

ming languages such as C/C++, FORTRAN, Python, Lua, and others.

E4S uses Spack for managing software packages. Table 2 shows the

list of packages from E4S that were used for our evaluation.

4.2 Data Collection
We explored the build space for several Spack packages from the

E4S software stack. The combinatorial package space consists of

millions of configurations. So, to create the dataset we randomly

select a set of concrete specs from that space. We refer to these con-

crete specs as configurations. The selection samples only different

versions and does not sample variants or compiler options.

We evaluate whether each configuration successfully builds or

not. Initially, we create a DAG in which the nodes are the unique

packages of all the sampled configurations. Common dependen-

cies among configurations appear only once in the DAG and, thus,
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Table 2: The number of tested configuration for various packages within the E4S software ecosystem. In total we explore 31, 186
unique root package builds resulting in examining 83, 796, 782 root packages and dependencies.

Package Configs(#) Good (#) Deps (#) Package Configs(#) Good (#) Deps (#) Package Configs(#) Good (#) Deps (#)

abyss 892 133 36 adios 58 11 48 amrex 616 543 40

ascent 320 14 32 axom 166 5 40 bolt 996 53 22

cabana 428 130 42 caliper 289 221 41 chai 298 19 16

conduit 599 241 29 darshan-runtime 190 163 39 hypre 322 264 40

hpx 799 384 45 heffte 292 163 33 hdf5 691 641 40

gmp 636 18 19 globalarrays 323 262 40 fortrilinos 146 8 30

faodel 361 269 29 kokkos 625 294 13 kokkos-kernels 567 115 14

libnrm 923 48 40 mercury 990 539 49 metall 275 261 14

mfem 441 348 119 mpark-variant 198 126 13 ninja 621 503 23

omega-h 999 213 42 openmpi 333 12 114 openpmd-api 90 28 41

papyrus 977 672 40 parallel-netcdf 345 25 39 petsc 403 26 141

phist 852 434 183 plasma 993 378 14 pumi 990 914 40

py-libensemble 381 18 56 py-petsc4py 119 7 50 qt 670 6 177

qthreads 94 94 22 qwt 87 21 102 raja 82 46 15

rempi 848 135 39 scr 30 20 65 slate 169 97 44

slepc 126 33 45 stc 692 3 41 sundials 708 636 40

superlu-dist 624 58 43 swig 215 183 18 sz 652 497 14

tasmanian 860 709 40 trilinos 1000 168 65 turbine 565 369 34

umap 702 610 13 umpire 82 52 15 unifyfs 246 13 41

upcxx 994 539 34 variorum 989 288 24 veloc 667 51 37

zfp 540 336 13

we built those only once. We implement a parallel build process

of the entire DAG in a distributed system. The process follows a

farmer-worker parallel paradigm. A single node operates as the

farmer. The farmer traverses the DAG and selects the nodes ready

for installation. A node is ready when all the dependencies of

the node have been successfully built. Once the farmer gathers

these nodes, it assigns their installation to workers. The work-

ers operate in parallel within the distributed cluster and issue the

spack install "specification" command to build the individ-

ual nodes. Once all workers finish their installations, the farmer

identifies which installations failed or succeeded and updates the

DAG. When a dependency fails, all dependent nodes are marked

recursively as failed. The process continues until all nodes in

the DAG are marked as failed or successful. In the end, the farmer

exports the DAG information and the node installation status to a

pandas [37] DataFrame and stores it into permanent storage.

The farmer-worker installation protocol relies on Spack being

parallelism aware and allowing multiple Spack instances to exe-

cute concurrently without corrupting internal Spack data struc-

tures. Spack implements a locking mechanism through the network

filesystem protocols and uses the lock when updating internal data

structures (such as the user spack database). During our evaluation,

we repeatedly pushed the locking mechanism to its limits. The pro-

cess exposed concurrency bugs in the mutual exclusion algorithm

implemented in Spack. We communicated and fixed those bugs

resulting in a significantly improved locking mechanism. In the

end, the farmer-worker protocol coupled with the improved lock-

ing mechanism resulted in executing up to 432 concurrent spack

instances with each instance using 9 CPU cores.

In Table 2 we show the total number of configurations for each

package, the number of successful builds, and the number of de-

pendency packages. Naively, building this data set would require

83, 796, 782 package installations, but Spack identifies unique builds

with a Merkle hash of their configuration metadata. That is, the

uniqueness of a configuration depends on the root’s metadata and

the metadata of all of its dependencies. By hash, there were 56, 645

unique package configurations (including root packages and de-

pendencies). We skipped the installation of 19, 662 nodes due to a

failed dependency build, and we performed 31, 186 total package

installations out of which 28, 157 were successful. This dataset was

collected on a 3, 018-node Intel Xeon cluster with 36 cores per node.

4.3 Metrics for Evaluation
A good sampling selection algorithm is expected to identify high

fidelity configurations while observing fewer samples. As a result

we use the following metrics to evaluate our approach.

Precision (P) tells us what fraction of the samples contain config-

urations that built successfully.

P(H) = |{𝑥 |𝑥 ∈ H , 𝑓 (𝑥) = 1}|
|H | (8)

Recall (R) gives the ratio of the configurations that successfully

built and included in the sampled set to the actual number of con-

figurations that successfully built in the entire sample space.

R(H) = |{𝑥 |𝑥 ∈ H , 𝑓 (𝑥) = 1}|
|{𝑥 |∀𝑥, 𝑓 (𝑥) = 1}| (9)

Area Under the Precision-Recall Curve (AUPRC): A PR curve

shows the trade-off between precision (P) and recall (R) across
different sample sizes. AUPRC is obtained by calculating the area

under the PR curve, and is calculated as shown below.

𝐴𝑈𝑃𝑅𝐶 =

𝑁∑
𝑘=1

P(H𝑘 )ΔR(H𝑘 ) (10)

where 𝑁 is the total number of configurations in the collection,

P(H𝑘 ) is the precision for 𝑘 samples, and ΔR(H𝑘 ) is the change
in recall that happened between 𝑘 − 1 and 𝑘 samples. The AUPRC

is a useful metric in problem settings like this where we care about

finding positive samples. In our case, AUPRCwill provide a measure

of how well the surrogate model is able to select high-fidelity build
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Figure 3: Precision for all the packages. Each point on these scatter plots corresponds to a package. Both the models of Reli-
abuild (Bayesian and Wisdom of the crowd) have a significantly higher precision than Random Selection. Reliabuild is boot-
strapped with 20 samples drawn uniformly at random, so performance of all the approaches is similar for sample size 20.
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Figure 4: Recall for all the packages. The violin plots show the probability density of recall values alongwith the interquartiles
means for different sample sizes. Each point shown here corresponds to a package color-coded based on their overall build
success rates (light blue to dark red corresponds to build success rates ranging from 0 to 1). R value of 1 indicates that all the
good configurations are included in the selected samples. Both the models of Reliabuild (Bayesian and Wisdom of the crowd)
have a higher recall score than Random, and for some packages attains R of 1.

configurations. AUPRC value of 1 indicates a model that is able to

select high-fidelity build configurations perfectly.

5 EVALUATION
In this section we evaluate our approach on the datasets listed in

Table 2. For each package, we compare the performance of all the

methods for a range of samples by running the algorithm 10 times

and reporting the mean for each evaluation metric. We evaluate

Reliabuild by comparing the Bayesianmodel and theWisdommodel

against Random Selection. In Random Selection, the configurations
are selected uniformly at random from the database.

5.1 Evaluation of Build Configuration Selection
A package dataset consists of several build configurations, of which

only a subset successfully built. The goal of configuration selection

is to identify high-fidelity builds using fewer samples. Figure 3

shows the P for different packages at different sample sizes. The

x-axis lists the packages sorted based on their build success rate

(number of good configurations divided by the total number of con-

figurations). The figure shows that both Reliabuild models (Bayesian
and Wisdom of the crowd) have a significantly higher fraction of

high-fidelity build configurations compared to Random Selection.
As mentioned in section 3.1, we bootstrap our search with an initial

set of 20 samples chosen uniformly at random, which is why all the

algorithms have a similar performance for the sample size of 20.

Figure 4 shows the R for different packages at different sample sizes.

The R metric for Bayesian andWisdom of the crowd is much higher

than Random Selection indicating that these approaches identify

several, if not all, high-fidelity build configurations with far fewer

samples. Note that for packages with a higher build success rate,

P would be close to 1, however R of 1 can only be attained when

at least that many samples are selected. For some packages, our

approach achieves an R of 1 with just 60 or 100 samples, indicating

that Reliabuild selected all the high-fidelity builds.
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5.2 Evaluation of the Models
While the metrics P and R show us the ability of the models to

select a sample that successfully builds, they don’t tell us how well

the model will perform if it has to identify all the good configura-

tions. We use the AUPRC metric from Eq 10, which calculates the

area under the Precision Recall curve, to compare the different algo-

rithms. The ideal value for AUPRC is 1 and the higher the value the

better the algorithm is at selecting good configurations. We divide

the data into test and training sets, train the models on the training

set and use it to evaluate the test set. Half of the dataset was used

for training and it was tested on the other half. The model used the

training set and iteratively selected samples and updated the model.

100 samples were selected. We used this model to evaluate the

test set and calculated the AUPRC metric. Figure 5 is a violin plot

showing the AUPRC metric for all packages in our dataset. It also

shows the probability density of the data at different AUPRC values

as well as the interquartile range. It can be seen that the Bayesian
model has a higher AUPRC value than the Wisdom of the crowd
model, which indicates that Bayesian is better at selecting high

fidelity build configurations. The figure also shows the distribution

of AUPRC values for different packages, where each point repre-

sents a package color-coded based on their build success rates (light

blue to dark red corresponds to build success rates ranging from

0 to 1). The packages with higher build success rates tend to have

higher AUPRC values because they are relatively easier to identify

and even Random Sampling can perform fairly well. For packages

with lower build success rates (indicating fewer high-fidelity builds

in the build configuration samples), Bayesian andWisdoom of the
crowd is able to achieve a higher AUPRC than Random Sampling
indicating that they are able to select high-fidelity builds in tough

cases. We also show the mean AUPRC for different recall cutoffs

in figure 6. While both the models from Reliabuild have similar

performance for smaller recall cutoff, Bayesian performs better with

a larger recall cutoff, indicating that it is able to more easily identify

all the high-fidelity builds.

5.3 Package Importance Analysis
A particular choice of version for packages can significantly affect

the build outcome. However, not all packages impact the applica-

tion build equally. Some of them are more sensitive than others,

and it would be very helpful for package managers and users to

be aware of them. Table 3 shows the top five packages or parent

child pairs (represented as parent+child, for example autoconf+m4)

that are most sensitive and is likely to impact the outcome of the

build process of the root package. The importance score calculated

using Eq 7. As can be seen from Table 2, each root package tens if

not hundreds of dependencies, and the number of package pairs

formed by parent and child is on the order of hundreds. Having the

knowledge of which packages have the most influence on the build

outcome can can be of significant help during the build space ex-

ploration, especially when installing on a new platform or looking

to upgrade to a newer version.
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Figure 5: AUPRC metric for all packages. Each point repre-
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success rate (light blue to dark red corresponds to success
rates ranging from 0 to 1). This violin plot shows the prob-
ability density of the data at different AUPRC values. The
Bayesian model has a higher AUPRC value than Wisdom of
the crowd model indicating that Bayesian is a better model
for identifying all the high-fidelity build configurations.
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Figure 6: Mean AUPRC metric for all packages at different
recall cutoffs. While both the models from Reliabuild per-
forms similar for small cutoffs, Bayesian performs better
for larger cutoffs indicating that it better at selecting all the
high-fidelity builds.

5.4 Extracting Package Dependency
Constraints

We use all the data from the dataset to build the Bayesian model

and analyze incompatibility between various packages. We utilize

the good and the bad probability densities from Eq 2 pertaining to

a parent child pair and calculate the EI from Eq 3 for the different
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Table 3: Relative ranking of dependencies for different root packages based on their importance. A parent child pair is repre-
sented by parent+child as in the case of autoconf+m4.

Root package Dependency ranking

abyss autoconf: 0.37 autoconf+m4: 0.37 autoconf+perl: 0.37 libtool+autoconf: 0.29 abyss+autoconf: 0.27

adios autoconf+perl: 0.27 autoconf+m4: 0.27 autoconf: 0.27 libtool: 0.22 libtool+m4: 0.22

ascent vtk-h+openmpi: 0.14 vtk-h: 0.14 vtk-h+vtk-m: 0.14 conduit+zlib: 0.12 conduit+hdf5: 0.12

axom lua: 0.08 lua+ncurses: 0.08 lua+readline: 0.08 lua+unzip: 0.08 axom+openmpi: 0.07

bolt autoconf+perl: 0.37 autoconf+m4: 0.37 autoconf: 0.37 automake+autoconf: 0.32 automake+perl: 0.30

hypre openblas+perl: 0.07 openblas: 0.07 hypre+openblas: 0.03 hypre+mpich: 0.02 mpich+findutils: 0.01

hpx hpx+boost: 0.24 hpx+hwloc: 0.24 hpx+pkgconf: 0.24 hpx+python: 0.24 hpx: 0.24

heffte heffte: 0.35 heffte+openmpi: 0.30 heffte+fftw: 0.24 cuda+libxml2: 0.19 mpich+findutils: 0.19

hdf5 mpich+findutils: 0.03 mpich+pkgconf: 0.03 mpich+libxml2: 0.03 mpich: 0.03 mpich+libpciaccess: 0.03

ninja ninja+python: 0.03 python+ncurses: 0.01 python+readline: 0.01 python+pkgconf: 0.01 python+libffi: 0.01

omega-h omega-h+zlib: 0.24 trilinos: 0.24 trilinos+openblas: 0.24 omega-h: 0.24 omega-h+trilinos: 0.18

openmpi json-c: 0.30 mariadb+lz4: 0.30 meson: 0.30 gmp: 0.30 python+libffi: 0.30

openpmd-api hdf5: 0.19 hdf5+zlib: 0.19 hdf5+openmpi: 0.19 hdf5+pkgconf: 0.19 hdf5+cmake: 0.19

papyrus papyrus+mpich: 0.11 cmake+ncurses: 0.08 cmake: 0.08 papyrus+cmake: 0.08 mpich+findutils: 0.04

plasma plasma: 0.52 plasma+openblas: 0.26 openblas+perl: 0.13 openblas: 0.13 plasma+cmake: 0.12

pumi pumi+mpich: 0.02 mpich+findutils: 0.02 mpich+libxml2: 0.02 mpich: 0.02 mpich+libpciaccess: 0.02

py-petsc4py py-mpi4py+python: 0.11 hypre: 0.11 hypre+openmpi: 0.11 py-mpi4py+py-setuptools: 0.11 hypre+openblas: 0.11

qthreads numactl+libtool: 0.00 numactl+autoconf: 0.00 bzip2+diffutils: 0.00 util-macros: 0.00 hwloc: 0.00

raja raja: 0.17 raja+cmake: 0.17 blt: 0.08 blt+cmake: 0.08 raja+blt: 0.07

rempi autoconf+perl: 0.52 autoconf+m4: 0.52 autoconf: 0.52 rempi+autoconf: 0.50 automake+autoconf: 0.35

scr libyogrt: 0.08 libyogrt+slurm: 0.08 scr+libyogrt: 0.07 scr+cmake: 0.05 scr+dtcmp: 0.05

slepc hypre: 0.42 hypre+openmpi: 0.42 hypre+openblas: 0.42 superlu-dist+cmake: 0.39 superlu-dist: 0.39

superlu-dist openblas+perl: 0.19 openblas: 0.19 cmake+ncurses: 0.11 cmake: 0.11 metis+cmake: 0.11

sz cmake: 0.12 cmake+openssl: 0.12 cmake+ncurses: 0.12 sz+cmake: 0.04 sz+zstd: 0.03

trilinos trilinos: 0.19 py-setuptools+python: 0.09 py-setuptools: 0.09 trilinos+mpich: 0.08 cmake+ncurses: 0.08

upcxx upcxx: 0.24 upcxx+mpich: 0.22 upcxx+python: 0.11 mpich+findutils: 0.08 mpich+libxml2: 0.08

variorum hwloc: 0.38 hwloc+ncurses: 0.38 hwloc+libpciaccess: 0.38 hwloc+pkgconf: 0.38 hwloc+libxml2: 0.38

veloc veloc: 0.58 veloc+openmpi: 0.58 veloc+cmake: 0.58 veloc+openssl: 0.58 veloc+libpthread-stubs: 0.47

zfp zfp+cmake: 0.06 cmake: 0.04 cmake+openssl: 0.04 cmake+ncurses: 0.04 bzip2+diffutils: 0.00

package version combinations. Figures 7, 8, 9 show the heatmap

indicating which version pairs are highly likely to build and which

ones are not. A lower score indicates that the pair is not likely

to build. This analysis was done for all the packages, but in the

interest of space we show only a few of them here. Figure 7 shows

which version pairs are incompatible in the case of Abyss. One

of the insights provided by the figure is that a newer version of

Abyss (version greater than 1.5.2) is not likely to build with an older

version of Boost (version 1.60.0). Similarly, we can see from the

figure that an older version of autoconf, such as 2.13, is most likely

incompatible with versions of Abyss greater than 2.0.2. Moreover,

note that the version pair combinations that are highly likely to

build is a much smaller set which indicates that this package pair is

highly sensitive to version changes. As a result, autoconf is among

the top 5 sensitive packages for Abyss as shown in table 3. Similar

analysis can be done for Adios and OpenMPI based on the figures 8

and 9 This information can be leveraged by the package manager

to introduce new package dependency constraints so as to avoid

configurations that can result in build failures.

6 RELATEDWORK
In 1997 the notion of “software release management” [49] was in-

troduced for large collections of independent packages. During

that period Linux distributions broadly adopted the [19, 25] pack-

age managers. The version selection problem is NP-complete and

can be encoded as SAT and Constraint Programming (CP) prob-

lems [15, 35]. Since then the idea of customizable solvers provide

modular package managers [4]. The work focuses on the Common

Upgradeability Description Format (CUDF). Commonly, this file

format is used by the front-end of package managers to describe

upgradeability scenarios to the back end-solvers. Multiple imple-

mentation are proposed to solve the CUDF scenario which employ

Mixed-Integer Linear Programming, Boolean Optimization, and

Answer Set Programming [5, 22, 38]. Such solutions have been

adopted by various Linux distributions [3]. Today, complete solvers

are being broadly adopted by various package managers. For exam-

ple, PIP recently switched to a new proper solver [46]. Dart now

uses CDCL SAT solver called PubGrub [51], and Rust’s Cargo [1]

package manager is moving towards this approach [2].

Despite the completeness of themodern packagemanager solvers,

the package managers rely heavily on a correct pre-selection of

version dependencies among packages and detection of possible

conflicts. A popular solution is semantic versioning (semver) [45].
In semantic version semver a version number characterize package

compatibility and breaking changes. Semantic versioning heav-

ily relies on developers knowing the rules of compatibility and

versioning their package releases correctly. Reports and empirical

studies [13, 17] indicate a broad adoption of semver. However, the
rules are complex, and thus not fully understood [16], and therefore

frequently resulting into semver misuse [43]. In the end, developers

drop the usage of semantic versioning and use fixed versioning dis-

regarding all the advantages of flexible versioning schemes. More

importantly though, as stated in [20] if all projects, in the end, fol-

low a fixed versioning approach conflicts will eventually arise that

prevent all packages from building.

In [32] the authors study how frequently and how soon pack-

age maintainers update their dependencies to include the latest

release of dependent libraries. Interestingly, package maintainers

rarely update their dependencies, resulting in software systems

which contain known vulnerabilities. The results indicate that a
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Figure 7: Heatmap of Abyss and its dependencies with scores indicating which version pairs are highly likely to build. It shows
that a newer version of Abyss (version greater than 1.5.2) is not likely to build with an older version of Boost (version 1.60.0).
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Figure 8: Heatmap of Adios and its dependencies with scores indicating which version pairs are highly likely to build.
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heavy reliance on libraries in contemporary projects often result

in the formation of complex inter-dependency relationships inside

that project. Due to such inter-dependency issues developers are

reluctant to update their dependencies.

There have beenmultiple approaches that suggest specific depen-

dency versions. The wisdom of the crowd [39] is a popular approach.

Where maintainers depend on the most popular, or highly used,

library versions. Based on such information users and maintainers

can more easily select library dependencies and avoid installation

errors. Other tools identify incompatibilities between versions at

the binary level [11]. In contrast, some propose techniques for

dependent packages to automatically perform code changes and

adopt to conflicts introduced by their dependencies [52]. Multiple

works [26, 40–42, 44, 47] focus on suggesting third party libraries

to use in projects. In contrast to our approach, these efforts fo-

cus on suggesting new libraries, and thus new dependencies. Our

work focuses on a different facet of the problem, how to select

which version of an existing third-party library to use in a given

configuration.

These works provide mechanisms to prevent using conflicting

libraries and thus avoid performing failing installations. In our

approach we embrace and accept the existence of failing build

configurations. However, we provide an active learning mechanism

through autotuning that learns which configurations tend to fail

and after a reasonable amount of iterations is able to predict high-

fidelity built configurations. Moreover, our technique is language

and system agnostic. In essence it only requires monitoring the

final result of the build process.

7 CONCLUSIONS
We have presented Reliabuild, an active-learning-based framework

to select high-fidelity build configurations using limited number of

samples. We implemented two models, one based onWisdom of the
crowd and another based on Bayesian optimization and evaluate

their efficacy in identifying build configurations that are highly

likely to build. For the purpose of our evaluation, we collected a

large dataset consisting of packages from the E4S package ecosys-

tem. We showed that our models are able to select high fidelity

configurations with far fewer samples in comparison to a random

exploration. For example, Reliabuild selects 3× the number of good

configurations in comparison to random sampling for several pack-

ages including Abyss, Bolt, libnrm, OpenMPI. Our framework is

also able to select all the high-fidelity builds in half the number

of samples as required by random sampling for packages such as

Chai, OpenMPI, py-petsc4py, slepc. We also leveraged our model

to provide insights about package incompatibilities, which can be

used by both package managers as well as users to identify prob-

lematic version pairs and avoid including them. Most importantly,

Reliabuild provides an automatic way to select high-fidelity build

configurations with significantly less samples.

8 ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory under

Contract DE-AC52-07NA27344. Work at LLNL was funded by the

Laboratory Directed Research and Development Program under

project tracking code 21-SI-005.



Reliabuild: Searching for High-Fidelity Builds Using Active Learning

REFERENCES
[1] Cargo: The Rust package manager. Online, March 2014. https://github.com/rust-

lang/cargo.

[2] PubGrub version solving algorithm implemented in Rust. Online, 2020.

https://github.com/pubgrub-rs/pubgrub.

[3] Pietro Abate, Roberto Di Cosmo, Georgios Gousios, and Stefano Zacchiroli. De-

pendency solving is still hard, but we are getting better at it. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 547–551. IEEE, 2020.

[4] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Depen-

dency solving: a separate concern in component evolution management. Journal
of Systems and Software, 85(10):2228–2240, 2012.

[5] Josep Argelich, Daniel Le Berre, Inês Lynce, João P. Marques Silva, and Pascal

Rapicault. Solving linux upgradeability problems using boolean optimization. In

Inês Lynce and Ralf Treinen, editors, Proceedings First International Workshop on
Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th July 2010,
volume 29 of EPTCS, pages 11–22, 2010.

[6] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano

Zacchiroli. Why do software packages conflict? In 2012 9th IEEE Working
Conference on Mining Software Repositories (MSR), pages 141–150. IEEE, 2012.

[7] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms

for hyper-parameter optimization. In Advances in neural information processing
systems, pages 2546–2554, 2011.

[8] Alex Birsan. Dependency confusion: How i hacked into apple, microsoft and

dozens of other companies, 2021.

[9] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How

to break an api: cost negotiation and community values in three software ecosys-

tems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 109–120, 2016.

[10] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random

testing of haskell programs. In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279, 2000.

[11] Bradley E Cossette and Robert J Walker. Seeking the ground truth: a retroactive

study on the evolution and migration of software libraries. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, pages 1–11, 2012.

[12] Russ Cox. What npm should do today to stop a new colors attack tomorrow,

2022.

[13] Alexandre Decan and Tom Mens. What do package dependencies tell us about

semantic versioning? IEEE Transactions on Software Engineering, 2019.
[14] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical compari-

son of dependency network evolution in seven software packaging ecosystems.

Empirical Software Engineering, 24(1):381–416, 2019.
[15] Roberto Di Cosmo. EDOS deliverable WP2-D2.1: Report on Formal Management

of Software Dependencies. Technical report, INRIA, May 15 2005. hal-00697463.

[16] Jens Dietrich, Kamil Jezek, and Premek Brada. What java developers know about

compatibility, and why this matters. Empirical Software Engineering, 21(3):1371–
1396, 2016.

[17] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe. De-

pendency versioning in the wild. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pages 349–359. IEEE, 2019.

[18] P. F. Dubois, T. Epperly, and G. Kumfert. Why johnny can’t build [portable

scientific software]. Computing in Science Engineering, 5(5):83–88, 2003.
[19] Marc Ewing and Erik Troan. RPM Timeline. Online, 1995.

https://rpm.org/timeline.html.

[20] Todd Gamblin. Software integration challenges. Technical report, Lawrence

Livermore National Lab.(LLNL), Livermore, CA (United States), 2021.

[21] Todd Gamblin, Matthew LeGendre, Michael R Collette, Gregory L Lee, Adam

Moody, Bronis R De Supinski, and Scott Futral. The spack package manager:

bringing order to hpc software chaos. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, pages
1–12, 2015.

[22] Martin Gebser, Roland Kaminski, and Torsten Schaub. aspcud: A linux package

configuration tool based on answer set programming. Electronic Proceedings in
Theoretical Computer Science, 65:12–25, Aug 2011.

[23] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten

Schaub, and Marius Schneider. Potassco: The potsdam answer set solving collec-

tion. AI Communications, 24(2):107–124, 2011.
[24] Jesus M Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr, Juan José Amor,

and Daniel M German. Macro-level software evolution: a case study of a large

software compilation. Empirical Software Engineering, 14(3):262–285, 2009.
[25] Jason Gunthorpe. APT User’s Guide. Online, 1998.

https://www.debian.org/doc/manuals/apt-guide/.

[26] Qiang He, Bo Li, Feifei Chen, John Grundy, Xin Xia, and Yun Yang. Diversified

third-party library prediction for mobile app development. IEEE Transactions on
Software Engineering, 2020.

[27] Joseph Hejderup and Georgios Gousios. Can we trust tests to automate depen-

dency updates? a case study of java projects. Journal of Systems and Software,
183:111097, 2022.

[28] K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt. Easybuild: Building soft-

ware with ease. In 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, pages 572–582, 2012.

[29] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based

optimization for general algorithm configuration. In International conference on
learning and intelligent optimization, pages 507–523. Springer, 2011.

[30] Kamil Jezek and Jens Dietrich. Api evolution and compatibility: A data corpus

and tool evaluation. J. Object Technol., 16(4):2–1, 2017.
[31] Donald R Jones. A taxonomy of global optimization methods based on response

surfaces. Journal of global optimization, 21(4):345–383, 2001.
[32] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro

Inoue. Do developers update their library dependencies? Empirical Software
Engineering, 23(1):384–417, 2018.

[33] G Kumfert and T Epperly. Software in the DOE: The Hidden Overhead of “The

Build”. Technical report, Lawrence Livermore National Laboratory, February 28

2002. UCRL-ID-147343.

[34] MeirM Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, 1980.

[35] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and

R. Treinen. Managing the complexity of large free and open source package-based

software distributions. In 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pages 199–208, 2006.

[36] M Douglas McIlroy, J Buxton, Peter Naur, and Brian Randell. Mass-produced

software components. In Proceedings of the 1st international conference on software
engineering, Garmisch Pattenkirchen, Germany, pages 88–98, 1968.

[37] Wes McKinney et al. pandas: a foundational python library for data analysis and

statistics. Python for High Performance and Scientific Computing, 14(9):1–9, 2011.
[38] Claude Michel and Michel Rueher. Handling software upgradeability problems

with MILP solvers. In Inês Lynce and Ralf Treinen, editors, Proceedings First
International Workshop on Logics for Component Configuration, LoCoCo 2010,
Edinburgh, UK, 10th July 2010, volume 29 of EPTCS, pages 1–10, 2010.

[39] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller.

Mining trends of library usage. In Proceedings of the joint international and
annual ERCIM workshops on Principles of software evolution (IWPSE) and software
evolution (Evol) workshops, pages 57–62, 2009.

[40] Phuong T Nguyen, Juri Di Rocco, and Davide Di Ruscio. Mining software

repositories to support oss developers: A recommender systems approach. In IIR,
2018.

[41] Phuong T Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.

Crossrec: Supporting software developers by recommending third-party libraries.

Journal of Systems and Software, 161:110460, 2020.
[42] Phuong T Nguyen, Juri Di Rocco, Riccardo Rubei, Claudio Di Sipio, and Davide

Di Ruscio. Recommending third-party library updates with lstm neural networks.

2021.

[43] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. Breaking

bad? semantic versioning and impact of breaking changes in maven central. arXiv
preprint arXiv:2110.07889, 2021.

[44] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, Takashi Ishio, Daniel M

German, and Katsuro Inoue. Search-based software library recommendation

using multi-objective optimization. Information and Software Technology, 83:55–
75, 2017.

[45] Tom Preston-Werner. Semantic versioning 2.0. 0, 2013.

[46] Python Software Foundation. New pip resolver to roll out this year. Online,

March 23 2020. https://pyfound.blogspot.com/2020/03/new-pip-resolver-to-roll-

out-this-year.html.

[47] Zhensu Sun, Yan Liu, Ziming Cheng, Chen Yang, and Pengyu Che. Req2lib:

A semantic neural model for software library recommendation. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 542–546. IEEE, 2020.

[48] Chris Tucker, David Shuffleton, Ranjit Jhala, and Sorin Lerner. OPIUM: Opti-

mal package install/uninstall manager. In International Conference on Software
Engineering (ICSE), 2007.

[49] Andre Van Der Hoek, Richard S Hall, Dennis Heimbigner, and Alexander L

Wolf. Software release management. ACM SIGSOFT Software Engineering Notes,
22(6):159–175, 1997.

[50] Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An informational

approach to the global optimization of expensive-to-evaluate functions. Journal
of Global Optimization, 44(4):509–534, 2009.

[51] Natalie Weizenbaum. PubGrub: Next-Generation Version Solving.

https://medium.com/@nex3/pubgrub-2fb6470504f, April 2 2018.

[52] Shengzhe Xu, Ziqi Dong, and Na Meng. Meditor: inference and application of

api migration edits. In 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), pages 335–346. IEEE, 2019.


	Abstract
	1 Introduction
	2 Background
	2.1 Versioning
	2.2 Spack
	2.3 Vision for the Future

	3 High-Fidelity Build Configuration Selection
	3.1 Iterative Configuration Selection Algorithm
	3.2 Probabilistic Surrogate Model
	3.3 Pairwise Importance Analysis

	4 Experimental Setup
	4.1 Evaluation Dataset
	4.2 Data Collection
	4.3 Metrics for Evaluation

	5 Evaluation
	5.1 Evaluation of Build Configuration Selection
	5.2 Evaluation of the Models
	5.3 Package Importance Analysis
	5.4 Extracting Package Dependency Constraints

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References

